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The research which was conducted under this contruact fell mainly into

three categories: gain switching, injection locking, and photon statistics.
In addition, some work in the foundations of radiative transport theory
and spectroscopy was also performed. A brief summary of this work will

now bhe given.

I. Gain Switching

The use of a metastable state as the upper lascr level offers the
possibility of obtaining large inversions and thereby storing large amouncs
of energy in the lasing medium. The problem associated with this i1s that
the linear gain which one obtains from the transition trom this level
to the lower laser level is quite small. The possibility of "dumping"
the energy stored in the metastable level by the application of an external
field was investigated.1 The external field, by inducing a dipole moment,
increases the transition probability between the two levels. One can,
theretfore, obtain a large inversion and then switch on the field to obtain
a good value tor the linear gain.

An estimate of M1, E2, and induced El trunsitions (for an applied
electric ticld of 10s ch—l) indicated ;hut transitions satisfying the
following two requirements would be good candidates for gain switching:

A) they are forbidden for M1 radiation
B) they occur at wavelengths of 1 to 10 um
Vibrational transitions in homonuclear diatomic molecules satisfy these

conditions, For i{, onc cuan obtain a gain coefficient, K, of

-

where AN/ is the relative population inversion and the clectric ficld is

a umed to be 105 V/cem,
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If one trics to use electric fields much larger than those considered

above, breakdown will occur. For the alternating electric field produced

by a giant laser pulsc it is possible to obtain much higher values of the

ficld, This would allow the gain to be increased by two orders of magnitude.
Spin forbidden transitions werc also examined to see it they would be

of use in gain switching schemes. In particular che transition from the

l: state of molecular oxygen to the ground state was considered because

this state can be produced in chemical reactions so that a practical

pumping scheme is available. An inhomogeneous magnetic field will cause

spin multiplet intercombination and, therefore, make spin torbidden transitiens

nossible. Actual calculations for the '3 - oxvzen system, however, showed

that the necessary magnetic ficlds were not practically obtainable.

II. Injection Locking

There are applications where it is necessary to have a hign energy
laser with a particular polarization. Duec to practical considerations
it is not always possible to use intracavity polariczation selective clements,
The laser output is then unpolarizated, or because of resonator geometry
or retlective properties orf the intracavity optical surfaces, the laser
may have a prefered polarization which is usually not known apriori, and
in some cases, is time varying.

It is possible that injection locking, which has been successfully
applied to frequency control lasers, may also be used for polari:zation
control. In tact, experiments have been performed where a polarized
output was obtained by injection locking an unpolarized rare gas halide
laser. We wanted to determine if polarization selection by injection

locki - will work for a wider range of lascrs.

Lo




We have extended the semiclassical laser theory to include luser s
operation with different polarizations and with an injected signal. We
considered two problems. The first is the effect of a polarized injected
signal on an unpolarized laser. The second is the effect of a polarized
injected signal on a laser that has a prefered polarization, We wanted to
know if the injected signal cun force the laser into operuting with a different
polarization. This latter case will be of interest in the scaling of lasers
by using a multiplex array. It may also find applications in lascrs with
annular gain regions which at present operate with axicon type resonators
that produce outputs that have time varyving polarizations.  QOur goal was
to obtain as understanding of the mechanisms underlying polurization control
via injection locking. As such, we have not dealt with tue more computa-
tionally complicated though possibly more useful cases of operation in the
strong-signal regime and with an unstable resonator. We are, at present,
investigating the above two problems. .

Our results indicate that, except when the injected signal and tree
running laser polarizations are orthogonal to cach other, it is not possible
to rotate the laser polarization so that it lines up with the injected
signal polurization. However, the difference in polarization may be made
arbitrarily small by increasing the injected signal strength. The reason
for 3 # ﬁi for finite injected signal strength and 0<0i<n/2 may be seen b
resolving the injected signal clectric field into 1 component that is
parallel to the free running laser polarization and component that is
nerpendicular to it. The parallel component huas a greater ctffect per
electric field strength than the perpendicular component because ot the

higher laser gain in that dircction. Consequently, the finui laser

polarization will always be between the free running laser and the injected
signal polariczations. When b= ow 2, there is no parallel component ot

the injected original and therctore it is possible to make 4 = 6.,
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If we consider the situation where we have an array of lasers and
where each laser has a different preferred polurization (i.e. the output

of the free running laser array is unpolarized), then the distribution

of polarization directions of the phase locked arrayv will have o width
given by
1 Aa ’1
AD = - — o
2 AcN ¢

where ¢ is the difference in the gain for the cowponents of the polarizucio..
pvarallel and perpendicular to the injected polarizacion, i¢ = ¢/2L where
L is the length of the laser, I is the intensity o7 the laser inside
the cavity, and & is the intensity of the injected signal outside the cavi. .
ITI. Photon Statistics

Our group has had an interest in photon stitistics problems for sev:. i
cears.  Recent work includes a generalization of revious results for a
single mode m-photon absorbtion process to an uarbitrary number of modes.;
Two-photon lasers were also studied. The photon statistics of such a
laser with a loss mechanism simulated by two-level atoms which absorb
a single photon was found.3 This was then used to investigate nonclassicai
effects in the light emitted.4 Two-niode luasers were investigated as well
and the intensity correlations for a laser of this type with coupled
transitions were found.5
IV. Other Work

Fundamental work in spectroscopy was also done. It was shown that
time-delayed measurements allow one to obtain accuracy greater than the
natural linewidth in the measurement of spectral lines.6 The founditions

of the thcory of radiative energy transfer were also the ob] 't of a stua,.




Wave propagation in a random medium was considered and various quantities
appearing in the usual phenomenological theory were related to the stochastic

properties of the medium.
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We consider sitrations whereby energy could be stored in a metastable state and then “dumped™ by swatching on an ex-
ternal field thus enhancmg the couphng to a fower state at some later tme. The present caleulations indicate that ts con-

cept merits experimental study.

In many high power lascrs, one often seeks a
population inversion between levels which are only
weakly coupled in order that a substantial inversion
may be obtained without ¢xcessive decay to the
sroundstate via spontaneous emission. In some cases,
however, this leads to the complication that the lincar
ean associated with the transition between these two
levels is very small. 1t is thus interesting to consider
situations whereby energy could be stored in a meta-
stable state and then “dumped™ by switching on or
enhancing the coupling to a lower state at some later
time. This might be accomplished. for example. by
applying a strong electric tield to a metastable state.
This field induced™ effect is well understood theo-
retically [1.2]. and has been verified in numerous
experiments [5.6.14.16]. Thus we propose to use
field induced transitions as a technique for switching
the 2am n an inverted medium by the application
of an external fickd. This technique could also be ap-
plied to amplificr systems. Furthermore, it would al-

Y Rescarch supported mopart by the (1S, Air Poree Office
of Seentitic Researeh under Grant Noo A TOSRE00278,
and by the Max-Plinek-Geselbsehalt zure Forderung der
Wissenschatten, Munchen, West-Germany, One of us (AWQ)
wis supported by the NSE Muateriabs Research Labuoratory
Program.
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low one to precisely control the onset of lasing zcton,

In this paper we shall demons:rate the feasibility
of this concept by studving a specitic type of molec-
ular transition, and show that gains ot several per-
cent per em can be obtained. The present calculanions
indicate that the concept of gain switching deserves
further experimental study.

In the present calculation we wish to compare the
electric dipole transitions which are induced via an ex-
ternal field (induced dipole TE1) with other types of
allowed transitions, leading to magnete dipole (M)
and electric quadrupole (E2) radiation, The orders of
magnitude involved in these processes are well known
in the M1 and L1 cases and can be easily estimated in
the IE1 case. For 1E] transitions the dipole moment
induced by external ficld # is given by [3]:

(I/) = GI".

| !
—+ ———— = hlalD)
TN /J' .

f

a= 22 (bll)lr)(rll)lu)(l;
. :

(WA
where ) is the electrie dipole operator: a, b and r label
the lasing and intermediate states i the transition con-
sidered. Tensor a is the matrix clement ot some scatter-
ing tensor operator a[4]. Actually formula (1) gives
the symmetric part of a only, which can be shown to
dominate the antisymmetric part in most cases. The

303
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scattering tensor may be estimated in terms ot an
average transition energy AX and typical dipole matnx
element ( as follows

-, ®ID- DIy
201D Dl )

~ 5 OID D) oy ¢ il_~_“10-4 LG
AL TAx ’ de )
Here we have assumed an external electric field /
= 10° Vem™! a typical transition energy AE =

X104 e corresponding to radiation at opnml
wavelength X = 0.5 i and a dipole mainx element
of the order of magnitude ¢ ™ eayy. Estimates of this
type lead to rigorous bounds on the scattering tensor
in all cases where the transition matrix element
(biatu) can be calculated in terms of diagonal matrix
elements [4]. This occurs tor example for atomic
transitions between {ine splitting components in LS.
coupling and tor vibrational transitions in molecules.
a may be appreciably larger than estimated in (3} if
there are strongly resonant levels r close to any of the
levels a or b. In general however {3) gives the correct
order of magnitude for atomic systems.

For M1 transitions the magnetic dipole moment is
a multiple of the Bohr magneton {3}:

dy:

dyy = ehi2me =4e heeay ~ 3.0 X107 ()

Finally for E2 transitions the rate is obtained uas tol-
lows [3]: Neglecting numerical factors o order unity
we replace the dipule matrix element « by the electric
quadrupole moment ( and divide by the wavelength
\ of the radiation emitted. Since ¢J equuls roughly a
typical intra-atomic distance tumes the dipole moment
we obtain for the corresponding matrnix clement:

dpy =N G =gl 1074 d for X = 0.5 um(s)

1n a working gain switched laser, application of the ex-
ternal ficld should increase the gam coefticient ol the
medium at least by an order of magnitude. It is clear
from the estimates given above that we should look
for transitions which meet the following requirements,
a) they are forbidden for M2 radistion teq. ()
by they occur at wavelengths ot [ to [0 . (eqs.
(3,50,
tncreasing the wavelength by an order of mownitude
will decrease the rate for E2 relat o 121 radiation
by two orders and increase the rate of [H relative
to E2 radiation by the same tactor. These requare-

RIX]
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ments are met by vibrational transitions i homo-
nuclear diatomic motecules.,

Homonuclear molecules like Hy do not possess a
transition dipoie moment tor etther vibrational or rota-
tional transitions. Furthermore their magnetic dipole
moment daes not depend on the internuclear separa
tion: hence vibrational transitions cannot occur tor
M1-radiation either. These transitions are observed
however as electric quadrupole transitions, in Raman
scattering and as field induced dipole transitions [£.6].
Vibratinai transition with Av = £1 are strongest and
are the only ones observed <o far. Transition noments
for | Au) > 1 are tound to be at least one order o max.
nitude smaller [7].

The rotational selection rules obeyed are:

A 2 O-branch.
A= 0 Q-branch.
A Y S-branch.

For H, the transition between the first vibrational
state and the groundstate occurs at a wavelensth of
A= 2.4 um. Hence we can expect the ficld induced
transition rate to be at least vne order of magniude
Jarger than the quadrupole rate.

As motivated above we now turn to a calculation
of the field induced rate 2]. Let us first recall the
physical mechanism of field induced transition n
homonuclear molecules. The external field will in-
duce a dipole moment in the electronic charge cloud.
This induced moment will depend on the internuclear
separation, and is hence coupled to the vibrational
motion of the molecule. The rotational selection rules
stem from the fact that in the transition one quantum
of angular momentum is transterred to the photon
emitted and one quantum is exchanged with the ex-
ternal field.

The square matrix element of the induced tionae
tion moment then is given by (o]:

1 e
e I VBT
T Er LMD 16 D)

SRR AR RS- R I
(“‘" tamray oyl Ses

2 JJ+ 1) 2,2 oy
=I5y iy nf Sedes
2 U+ Vg ' S

B Y+ ! Jo=t+
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Eaperumental and theoretical results for the polacsabilny. matnx clements ot the molecules Ha and N4

N2
exp. o theor. exp. o theor.
agy (10725 ¢cm3) _1.7:7 {6|. o 111‘;]7*7 ~~;5~ ‘1;1. 0.48,0.38 117}_
vo1 (10725 ¢m?3) 0.7 |14): 0.9 [15] 0.72 lel, 0.54,0.38 {17}
Ataodem™h 4.16

Here a,)) and ¥y are matrix elements of the clectronie
groundstate polarisabilities a(R) and y(r) (R = nter-
nuclear distance) taken between the vibrational tevels
considered. o and y are detined by

-2 1 -
a=5a; t30,. Y=a, -a,,
wlhere
Oy =0y =0y, Q.. =a,

are the components of the electronic polarisability
tensor. Transitions in the Q-branch (A = Q) are
strongest. Neglecting contributions trom vy, which
are ot the same order of magnitude as prabable errors

in ay; we obtain for Q-transitions the spontaneous
rates

4.3
=32\ g F]2,

h
=09x10° 45! for H,.

=34Xx107%s 1 forN,,

both at /= 10° Viem.

Although these rates are rather low we still anticipate
reasonable gains since the field induced lines undergo
collisional narrowing, This phenomenon oceurs if the
molecule undergoes many collisions while traveling
over distances of about one wavelength {8]. Asa
result the lines are pressure hroadened with width well
below the doppler width at densities of 1 amagat.

Expernimental and theoretical data on the collision
narrowed linewidth are available for Hy From ret.
(6] we take the value ot pressure broadening coetfi-
cient

AANy=21Xx1071 Vamazat] em !

The gain coefficient K is then given by
i
. AT W
A=AV- s
3z canh

AV

5 Iy e !
N(JXIO Yem

where AV .V is the relative population inversion.
Keeping this quantity fixed the gain s mdependent
of the density .V in the pressure broadened rezime,
since the linewidth is proportional to .V,

Higher gains can be obtained by increusing the
strength of the applied tield £ For a static eld elec.
tric breakdown will occur at field strength larger than
the value of 10° V/em considered here. For the 1ter-
nating electric field produced by a giant laser puise
much higher values are possible. For example a ficid
strength of 10° V/em would correspond to a faser in-
tensity of 2 X 108 Wiem?. but intensities ot up to
1010 W,'cmz have been achicved for picosecond pulses
without optical breakdown [9].

In order to establish the feasibility of gain switching
using a high power laser pulse as the source of our clec-
tric field. we use the following expression tor the nux-
ing of lasing and intermediate states a and -« due 1o
our switching laser signai {20]

ey,
latr)) = [a) + (;”—D—[Fwﬁ e Mol

RO ARY i

. elvol by, (0)
[:.1 — /'.r - huo ’

where F) denotes the positive and negati e narts of
the injected ficld. and vy is the frequency o1 the inrect.
ed field.

From cq. (6) we see that the injected liwor t1eld

395
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muxes states momuch the samme way as does an ordinary
do fiekd. However as noted above the fields are now
much fareer and this would increase the emn fivures
obtained above by at least two orders or magnitude.
In this case zan fzures of several pereent om Y eould
be expected tor the Ny molecule also. For this mole-
cule efticient + ~rational pumpina techmques such as
electron impa.: 10} and discharges [ are avadable
From the semichassical pomt of view, appheation o1
a nme dependent electric 1eld at trequency iy will
lead to an induced transition dipole moment osaiflat-
g at frequenaies v+ g and o - ey where vas the
vibrattonal transition tfrequency. Hence stimulated
emusston wiil be observed at both sidebands. In a quan-
i mechanicad treatment we would have 1o take into
account the fact that the gun cross-section for both
emission trequencies are not exactly equal {12, 13,18,
In the present work the notion of inducing a dipole
transiion matnx clement via a time-dependent laser
tield was an vutgrowth ot our cafculations invoiving
& de electne tield. Those caledlations were based upon
the carlier work of Overhauser {20]. Upon completing
our analysis. it became apparent that there 1s a close
connection with the earlier work of Harnis etal.,in
which they utilized an incident laser to induce transi-
tions from metastable atonne fevels [1S 194 A more
Jdetaded discussion of the present work, connection
with the work of Harnis et al., and the question of
population mversion i our Hy sysiem will he given

clsewhere.

The authors gratetully acknowledue helprul disens-
sions with P. Avizoms, K. Kompa and S, Rabin.
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Theory of time-delayed measurement: Subnatural linewidth and transient dip spectroscopy
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Time-delayed measurement of naturatly broadened transttions can lead to a narrowing
of the linewidth. Moreover, under appropriate conditions, it may result in the appearance
of a dip at the line center. An analysts of ttme-delayed measurement thus provides a
theoretical basis for useful optical techmques vielding high spectral resolution. Such an

analysis is presented in this work.

I. INTRODUCTION

It has traditionally been one of the main en-
deavors of spectroscopists to develop measurement
techniques yielding ever-higher resolution. In opti-
cal experiments the precision of the measurement is
often limited by the broadening of the linewidth
caused by the interaction of the system under in-
vestigation with its environment, such as Doppler
effect, collisions, and spontaneous decay. It might
seem that, after the Doppler- or collision-
broadened width has been eliminated using one of
the many schemes introduced in the past for that
purpose.' the natural linewidth remains the ulti-
mate limit to high-resolution spectroscopy.

Recently, we” have proposed and analyzed some
spectroscopic techniques which provide resolution
beyond the naturai linewidth. These considerations
are based on the fact® that, in the transient regime,
the probability for induced transitions in a two-
level system interacting with a monochromate
electromagnetic field is not weighted by a Lorentzi-
an of width y,, =, + 75, but rather d,, =y, — 13,
[ys and y, are the decay rates of the two levels.
Note that in this paper, we call 3, and y, the am-
plitude (rather than population) decay rates. Thus
Ve and y, are twice as large as in the usual nota-
tion.] As a specific example to demonstrate such
transient line narrowing, we have proposed an ex-
perimental setup. inspired from delayed detection
level-crossing spectroscopy, that utilizes a time de-

24

lay between the system preparation and the obser-
vation of emitted radiation.

Knight and Coleman® have shown that a similar
result may be achieved in a system of two-level
atoms weakly driven by an exponentially decayimg
laser pulse. In this system, although the lower lev-
el is stable, the exponential decay of the pulse am-
plitude has the same effect on the fluorescence
spectrum as would the exponential decay of the
lower level. Metcalf and Phillips™ have shown that
despite the loss of signal associated with time-
delayed detection, it may still prove very useful in
a number of applications. For example. as em-
phasized in Ref. 2. this technique would allow us
to measure the difference (37, — 1 ) directly, and
therefore to a much higher precision than could be
obtained from independent measurements of -, and
Vo-

We note that transient line-narrowing spectros-
copy has a number of similarities with detection
schemes developed earlier to achieve resolution
beyond the natural linewidth in Mdssbauer.”’
level-crossing,” ' and Lamb-shift'* =" expeni-
ments. The common feature of these experiments
is to discard the part of the radiation emtted
shortly after the preparation of the system and to
collect only the delayed and exponentially weak-
ened signal.

In this paper we present a fully quantum-
mechanical treatment of time-delaved spectroscopy.,
both for weak and strong incident fields. In the

1914 ¢ [981 The American Physical Society




24 THEORY OF TIME-DELAYED MEASUREMENT: SUBNATURAL . 19s

discussion of Ref. 2 the atoms were assutaed to be
driven by a weak classical field. so that a perturba-
tive treatment can be used. In general. the strong-
tield dynamics 1s substantially different tfrom the
weak-field one. Since the time-delayed spectrum
depends sensitively on the temporal behavior of the
system, one might expect that the inclusion of
power broadening would lead to a different time-
delayed spectrum.  In fact. as is shown in the
second part of this paper. it can lead to the appear-
ance of a transtent dip at hine cenier. This dip at
line center may prove to be a useful technigue to
determine accurately the position of the transition.
Thus, time-delayed fluorescence measurements
have the capability of providing high spectral reso-
lution, not only through the line-narrowing effect,
but possibly via strong-field “'transient dip spec-
troscopy ™.

The goals of the present paper is threefold.
First. we show that the results previously obtained
semiclassically are recovered exactly in a fully
quantum-mechanical treatment. Second, we extend
the previous “weak-field” calculations to arbitrary
strength driving fields. Third. we give an intuitive
physical picture of transient line narrowing and
transient dip spectroscopy, based on a well-known
feature of the Rabi problem.

The remainder of this paper is organized in the
following way: In Sec. [, we give a fully
quantum-mechanical theory of transient line nar-
rowing, considering an atom weakly driven by ei-
ther cw or pulsed excitation. In the case of pulsed
excitation, square pulses, as well as exponentially
decreasing pulses, are considered. We show that
this leads to exactly the same results as the semi-
classicai theory,™* provided spontaneous emission
directly between the two states under consideration
is neglected, and the emitted photons from the two
states are distinguishable. In Sec. III the effect of
power broadening on the time-delaved spectrum is
studied. It is shown that the inclusion of power
broadening leads to the appearance of a transient
dip. Finally, Sec. IV is a summary and discussion.
Throughout the paper, natural units fi=c =1 are
used, unless otherwise stated.

II. QUANTUM-MECHANICAL THEORY OF
TRANSIENT LINE NARROWING:
WEAK-FIELD LIMIT

A. Four-level atom driven by weak cw radiation

We first consider the system previously investi-
gated by Meystre, Scully, and Walther.” This sys-

tem consists of an atom with two unstable levels o
and b and a weak ow field driving the atom trom
the jower level b 1o the upper level uo I one -
cludes the lower fevels to which a and b decay, this
may be considered as a four-level atom see Fre. |
We prepuare the atom in level £ and, as the ficld
dnvas the atom to fevel u, we count the photons
emutted following the ¢« transiion, starting a
finite tme ¢ after the atom 1y prepared. The
counting rate 1s measured as a function of the de-
iunmng between the luser tfrequency A, and tac en-
ergy separation 3,, between g and b

Under the rotating-wave appronimanon and in
the interaction preture, the wave function mas be
written as

) =an ao N -k ~abin VK
» [dNern e N LNK
- [t da Ko
with

WOy - BNK,) .

[

L

Here ¥ is the number of photons in the dnving
field, a.(V -1 >k.n) denotes the state i which the
atom is in the state g and ©.V — 1) photons of mode
l{(, are present 1n the radiation field tand similarly
for other eigenstates), and .k.,, Is the wave vector of
the driving field. K, and k. denote the modes of
the photons emitted following the g «c and b +d
transitions, respectively. In writing Eq. (2.1) we
have assumed that the energy separations between
any two levels are sufficiently different from one
another that the photons kg, l:,. and k. are distin-
guishable. We also have assumed that spontaneous
emission from a to b can be neglected. Substitut-
ing Eq. (2.1) into the Schrodinger equation, we 1m-

FIG. 1. Four-level atom driven by c¢w radiation.
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mediately obtain the following equations tor the
probability amplitudes

ii;fa“m SVNME explitdgy  Aaula™e
" 1

- fdk].‘l : epli g, TR

,—‘i'u"m VM epl i, et
t '

n ]u':' t

o fUN M enpleAn

ARRY )

.d . s R

i=as =M expl A, A dfate 2 i
dr b '

i(Tlu':'(r):Mk- expl Ay Asalehos 2
dr ¢ :

subject to the tnitial condion, Fq 22 or
a’tor=1. AERY
att0) = uk O -t l()),,() 24b

4, is the energy separation between the states
and j. k, is the energy ot a photon. te. A, - &,
and M - is the atomic-transinon amphtude dcllmd

as
Gk Hp i0)=M exp[ —itd, —Au]. 2.5
3
N oMy :7’a expt —2y,8)
VA = — N
-+63b 27'a -;’b

where 8,5 = ¥4 —¥py Yab =7Ya + V- and 3, and 3,
are the decay rates of levels g and b. respectively.

We note that in the limit 6—0, Eq. (2.7) yields
the usual Lorentzian of width y,,. However, if ¢
is sufficiently large, only the first or the second
term in the large parentheses of Eq. (2.7) remains,
depending upon which of y, and y, is largest.
Thus. the dependence of N(A,0) on A is determined
mainly by the Lorentzian prefactor, and the line-
width approaches the difference 8,,. This is the
transient line-narrowing effect. In fact, Eq. (2.7) is
identical with the expression obtained earlier” using
the density-matrix equations and a classical
description of the field. Here, Eq. (2.7) is obtained
using . fully quantum-mechanical approach. The
wwrmalized power spectrum N (A.0) is shown in
Fig. 2 for y, =3 and y, =1, and in Fig. 3 for
Ya=101 and v, =1.

expt — 28
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wherer v orpand ;o or d 1or the present case,
H, denotes the interaction Hanultonian in the in-
teraction proture

In order to have an unambiguous definiion ot
the tme-delaved power spectruni,
troduce ¢ mode] detector mie the problem I

this paper. we consider the same scheme as in Ret
Al

one needs Teoane

e owe detedt the total tumber of photons spot
tancousiy cmitted following the transimon o
4 tunction of the detuning 3 between the dnving
tield and the atomie energy separation

A, A A A, Wethen define the me-
Jdelaved spectrum VAU as

” x
Yo
e J, @
t.e.. as the number of photocounts trom time ¢ on

This can be reexpressed ::~ the number of enmutted
photons at £ = x minus that i 1 =6,

ViAo = [dK e

- [dx,

Thus. the time-delayed photocounts can be ob-
tained by solving Egs. (2.3 and substituting the
solutions tnto Egs. (2.6a) or 2.6b. Details of the
calculation are shown tn Appendin A for the
weah-field imit. Here we only show the result

ot AN

Vioadh aser 2.64

<o)

a1 =8 <. 12.6b:
i

Texpt - puath

1A NNAY - Fup cOSAH T

Q7.

Ay !
r
: AN
R (AN
'.‘ - ~
) Onsran aneigy A
FIG. 2. Normalized photocounts V1A as a fune-

tion of A for various values of the delay 6 =0. 0.67,
1.33, and 2.0 for the cases 1, - Jand yp=1. G1sn
units of 3 . If the system under consideration 1s the
one shown 1n Fig. 1, & is the energy detuning between

the driving field and the atomic-energy separation. If
the system 1s that shown in Fig. 4. 3 1s the energy de-
tuning between the central frequency of the driving pulse
and the atomic-energy separation, and y, 1s the decay
constant of the exponentially decreasing pulse.
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e e . - The pulsed radiation can then be represented by
N /AN
: A1 AW Ng) = -l_ (B"Y vacuum) | (2.9
H Soh e VY
: 7 C) A \\ . ’ where N is the number of photons in the pulse.
. ] \ NN For simphcity, we take NV =1 and consistently lim-
;o e / \ N N o it ourselves to the weak-field limit.
P _\_‘ ,-\_;:l___, As before, we write the wave function as

. -4 3 -2 - 2 . 2 ) 4 -

Proton energr &

FIG. 3. Same as Fig. 2 except that ¢=0,1,2.4 and
Vo - 101,

B. Three-level atom driven by weak-pulsed radiation

Knight and Coleman® have pointed out that
transient line narrowing can also be realized in a
system of two-level atoms driven by a weak ex-
ponenually decreasing pulse. In fact, the subnatur-
al linewidth observed in Mdssbauer experiments®’
involves basically the same system. For conveni-
ence we introduce, in addition to the two levels g
and b, a third level ¢ 1o which the upper level a
can decay (see Fig. 4). Comparison of Figs. 1 and
4 shows the strong analogy between this system
and that discussed previously. The only difference
is that the exponentially decreasing pumping rate
arises now from the exponential decay of the pulse
amplitude in Fig. 4 whereas it came from the ex-
ponenttal decay of level b in Fig. 1.

We describe the radiation via its spectral ampli-
tude &tk ). For an exponentially decaying pulse,
this would be a Lorentzian. However, we keep
(k) arbitrary, so that our result is valid for any
pulse shape. Let us introduce the operator B'

A7
aslhl

B'= [dKs(Kay (2.8

LA .
where a ¢ is the usual photon creation operator.

b, b
L
L’L\“
—2
PULSE [L—:—:
—
b

FIG. 4. Three-level atom driven by radiation pulse.

)Y = atty) (a.0) + fdk'aﬁ'(l).jb,k‘)
+ fdila‘;lm oK) (2.100
with
W0 = [dKé(K) bK)= b1y . (21D
Substituting Eq. 12.10) into the Schrodinger equa-

tion, we obtain

d g v .
l;i’(l(l)z fdkﬂgexp[/l.&ab—k)l]aiﬂ)

- [Ny explit Age — ke (10,
(2.12a1
d
i ) =M ceapl =i, — Kit]a® Q2.12b
[¢

o

idl (I‘L'l(l)zA\'lk" expl — i1 Q, —kynja®ey . (2120
where, as before, we have assumed that A,, and

Age are sufficiently different from cach other <o

that the photons k and Kk, are distinguishable.
Equations (2.12) are subject to the initial condition,
Eq. (2.11), or

@101=4(K). a%0)=a5; (01=0. Q2.1%

The number of photons emitted following the
a —c transition from the time 1 =6 on is given by

NAO =25, fg dy a®uy) ?

= fdk'| ai-l\l:r)i:—fdk‘, a‘k"(r:(i\ <

2.1

This can be obtained by solving Egs. (2.12) and
substituting the solution nto Eq. (2.14). Details of
the calculation are shown in Appendix B, neglect-
ing spontancous decay tfrom a to b t5, 1s the decay
rate of the ¢ ¢ transition). N (A.0), of course,
depends on the pulse shape because the solutions of
Eqgs. (2.12) are different for a different choice of
Sk

For the case of an exponennally decaving pulse,
N A is again given by Eq. (2.7), Therefore.,
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Figs. 2 and 3 also give the normalized count
N(A,0) for the system considered here. We note,
however. that k, is now to be interpreted as the
central frequency of the pulse, A=k, — g, and ¥y
—

is the decav constant of the pulse rather than of
the atomic level.

For the case of a square pulse of duration 1,,. we
obtain

2.8 v, .8 expl — 2yt ) — expl — 2y, 6)
s (lo—U— Y
A +y; v,
2expl — ¥, 10 My cosAty —~ A sinAry ) — 2expl — 1,003, cosAH — AsinAf)
0 - : - S .Y
, Aty ‘
N(AO) = !
. for.:. .
18 ~expt—2y,0)
[ 1+ expt2y o)~ 2expty, ) cosAs
PR ( ptetalo PYalo ol for 0~1.. .
t2.15be

&, 1s a constant depending on the pulse parameters, A, 1s again the central frequency of the pulse, and
A=ky—44. The normalized count NV (A.6) is shown in Fig. 5 for r,,=1 and 3, = 3. and in Fig. 6 for 1, = 1|
and y, = L.LOL. N(A,0) takes the same form for all ¢'s exceeding 1. This is because, for &> 1, the situation
is analogous to making time-delaved measurement on a two-level system with the levels ¢ and ¢. We see
that the line narrowing does occur with a square pulse although the narrowing is not as dramatic as that as-

sociated with an exponentially decreasing pulse.

C. Physical interpretation of transient line narrowing

Since transient lite narrowing arises from the
behavior of the system in the transient regime, it is
natural to study the temporal behavior of the sys-
tem in order to better understand and interpret the
effect. Intuitively, it is not difficult to understand
the line-narrowing effect. It is based on the well-
known (but perhaps anti-intuitives fact that the
Rabi frequency is larger tor larger detunings. and
that therefore the excitation and the depletion of
the population of the upper level (level a in our
system) are slower when excited exactly on reso-

1 OF= s ey ——

P~

N

Nernaied protocounts NAG
<o
-
»

Ensray dotuning 4

FIG. 5. Normalized photocounts N(A.0) as a func-
tion of energy detuming for various values of the delay
#--0. 0.5, and 0> | for the case ¥, =3. The dnving
field 1s assumed to be in the form of a square pulse of
duraton 1, =1. #1510 units of 1,,.

nance. This means that the remaining population
after some delay time 6 is relatively a large number
when excited on resonance, thus leading to the line
narrowing. In this section we show quantitatively
that the above interpretation is indeed true.
Although our discussion here is limited to the case
of an atom driven by pulsed radiation, it can equal-
ly be applied to the system considered in Sec. 11 A
provided that the appropnate redefinition of k.
¥p. €tc., i1s made.

The integrand  a”tn) * in Eq. (2.1 for the pho-
tocount 1s the probability tor the atom to be in the
upper state a at ime 1. For the case of an ex-
ponentially decreasing pulse, we find using Eq.

(B4} of Appendix B,

- 10 -
g
:
:
H
ICEYS
‘
S
© .,
N

< I i oN T
I
5 I
2

o f . '

. ¢ 3 .

Energy gotuning &

FIG. 6. Same as Fig. S except that 3, 101
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FIG. 7. Probability P°(A.r) as a function of time ¢ for
two values of energy detuning A =0 and 2 for the cases
¥s =3 and y, = | iexponentially decreasing pulse). The
time is u. amts of 5 L.

PUAN = (d®n it

g !’
= ~—-—A[2 ;g [ exp( —2y,1) + exp( —2y,1)
(]

—2expl —ygpt)cosAt] . (2.16)

pLA,t) is plotted in Fig. 7 as a function of time

for two different values of detuning A =0 and 2 for
the case y, =3 and y, =1, and in Fig. 8 for
¥a=1.01 and y, =1. p%A.r) initially increases as
the driving field pumps the atom to level a, goes
through a peak and eventually decreases to zero be-
cause of spontaneous emission. The peak occurs
earlier and has a smaller value for A =2. This re- r

12

g

g0~

Protsd 1) P Lit teary sco e

FIG. 8. Same as Fig. 7 except that j, =1.0].

flects the above-mentioned fact that the Rabi fre-
quency 1s larger for larger detuminas -nd 18 the key
point in understanding the line-narrowing effect.
According to Eq. (2.14), N(A,0) is the area under the
probability curve between r =€ and x. We see
from Fig. 7 that, as 6 is increased, this area de-
creases faster for larger A. This is even more clear
in Fig. 8. The integral of p?(A.r) between. for ex-
ample, t =2 and x is only a small fraction of the
area between f =0 and « for the case A =2, while
it is still a large fraction for the case A =0. Thus,
the larger A, the faster the system emits spontane-
ously and leaves a smaller number of photons to be
emitted after some delay time 0. This directly
leads to the narrowing of the linewidth.

For a square pulse of duration 1, the probability
takes the form

ja%n|*= e T[4+ expl —2y,1) —2expt —y, t)cosAt]. for 1<t (2.17a)
“+VYa
pHAN=
s [ 2expl —2y,0)
la®(t) - = !&—Ayz—,—h—[expﬂrltnwlalcxp(y,,tu)cosmo]. for t ~1, (2.17b)
A"+ ¥,

where Egs. (B8) of Appendix B have been used. This probability is plotted in Fig. 9 as a function of time
for two different values of detuning for the case 1, = 1. j, = 1.01. Here again we see that the peak occurs
carlier and has a smaller value for larger detunings, although the effect is not as strong as before. This ex-
plains a relatively weak li- * narrowing with a square pulse.

III. STRONG-SIGNAL REGIME: TRANSIENT DIP SPECTROSCOPY

Up to now, we have restricted ourselves to the weak-field limit, in which the =we o+ & turbative treat-
ment is justificd. We now relax this restriction and study time-delayed spectroscop, a the strong-signal re-

gime.
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The analysis departs from that of the weak-field limit in that instead of using Eq. (AS) of Appendix A, we
now solve Egs. (A2) and (A3 exactly for a(1) and a®(1). These equations yield a second-order differential
equation for a®(r) [and also for @®(1)), with the solution®

_ !
aie) = —IVN.'ME'UCXP(Uzl) fo dryexpllu) —u>,], 3.b
where
uy=| —vVop—iA+[(8; +iA) ~4N Mz W, (3.2a)
uy=| —Yap—iA—[(8sp +iAY —4N | M7 | SRV (3.2b)

Using Eqgs. (3.1) and (2.3c) we get
. — ' 3
a%l(!)z‘(—l)'V‘VME'OM;'l fodtlexp[u_’.—i(Am‘—kllh f() dlzexp(u,—uz)tz . 3.3

The number of photons emitted during the time interval (6, ) following the a—c transition is again given
by Eq. (2.6a) or (2.6b). After tedious but straightforward algebra, we obtain
N(A0)=[47,N | Mz | Zexpl — a0 )/p
Yab coSh[0V'p cos($/2)] + V/p cos(¢/2) sinh[6V p cos(¢/2)]
Yab —pcosié/2)

Yab cOS[6V psin(6/2)] — Vpsin(¢/2) sin[ 6V psin(6/2)]

73 +psinid/2) ' (3.4
where
p=[(83 — 87 —4N (M. | R 4+4854%), (3.5
and ¢ is determined by
cosd=(8), — A2 —4N IMgo[:)/p. (3.62)
sing =28,,A/p . {3.6b)

Equation (3.4) is the main result of this section. The time-delayed count N(A.8) is, in general, a complicat-
ed function of the system parameters, and we first consider some limiting cases.

1
A. Weak-field limit cosb=(8z —~AM/p (3.7b)
In the weak-field limit N —0, we obtain sind~28,,A/p . 3.7¢)
p~bay +A%, (3.7a) Equation (3.4) reduces then to Eq. (2.7) of Sec.
) IT A, as it should.
; o sr—~ ' - — = T 1
;'“.f . . B. No time delay
& M ‘ In the limit 8-+0 (no time delay), Eq. (3.4} be-
. a2t H,/' ano : comes
. / . N M e
‘: ) Nl NAOB=0= -~ o~ TTUUTITYTY T T T
oe : Lom— FlAT HYan £V M e/ Vi)
Time ¢

(3.8

FIG. 9. Probability P? as a function of time ¢ for two S
values of energy detuning A =0 and 2 for the case ¢, -- | which is the well-known power-broadened
tsquare pulset and 3 = 1.01. 15 10 umits of ¢, Lorentzian line shape.
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C. General case

We now return to the general formula Eq. (3.4).
In Figs. 10 and 11, N(A,0) is plotted as a function
of the detuning A(=ko—4,,) for different delay
times ¢ and for different field intensities for the
case ¥, =3 and y, =1. We immediately see a new
feature of the power-broadened spectrum, namely,
the appearance of a dip at line center for large ¢
and for high enough field intensities. A close in-
vestigation indicates that, for a fixed value of the
field intensity, and as 0 is increased from zero, the
linewidth first decreases (transient line narrowing).
However, as 6 is further increased, the line
broadens back until the linewidth becomes roughly
the same as that at §=0. If 8 is further increased
beyond this point, a narrow dip appears at line
center, and becomes deeper and wider as 0 is fur-
ther increased. Since it always appears at line
center. it may help locate the center of a transition
with improved accuracy over standard methods.
The dip appears with a smaller delay for stronger
fields. Thus, one can operate without significant
loss of signal. For example, for a Rabi frequency
G(=Ni M-,-;“ | *)=1.5, the dip appears already at

9=2. On the other hand, for G =0.6. the dip still
does not appear even for 0 as large as 4. In Fig.
12 we show N (A,0) at a fixed 0 as G is varied.
Here again, we see clearly that the dip appears
more easily for stronger fields.

In Fig. 13 we show the same N (A,0) versus &
curve for the cases y,=1.01 and y, =1, and G =1
for various 6. We immediately notice the strong
oscillatory behavior exhibited in this case.

A useful parameter to determine the behavior of
N (A.8) is the ratio of the Rabi frequency to 8, or

r=G/8;, . 3.9
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FIG. 10. Normalized photocounts N (4,01 as a func-
tion of energy detuning A for various values of the delay
#=0,2,4,68,10 for the case y, =3, ¥ =1, and the Rabi
frequency G =N ' M | 1-0.6. 0 isin units of y; .
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FIG. 11. Same as Fig. 10 except that 6=0,1,2,4,10
and G =1.5.

This ratio determines whether the arguments of the
hyperbolic functions are larger or smaller than
those of the sinusoidal functions in Eq. (3.4}, and
therefore determines the characteristic behavior of
N(A,0). For the case of Fig. 13, r is very large

(r =10% and the contribution from the sinusoidal
terms is important. As a result N (A,0) exhibits a
strong oscillatory behavior. On the other hand. r
is relatively small (r < 1) for the cases shown in
Figs. 10 and 11, and no strong oscillatory behavior
is exhibited there.

In a sense the transient dip is an opposite
phenomenon to the line narrowing because, in or-
der for the dip to appear. the remaining population
of the upper level a after the delay time 6 should
be a relatively small number when excited on reso-
nance. That is, the depletion of the population of
level a should be faster when excited on resonance.
That this is indeed the case when 0 is sufficiently
large can be seen in Fig. 14, where the probability
pHA= | a%1)]? for the atoms to be in level g is
plotted as a function of time for two different
values of detuning for the cases ¥, =3, ¥, =1, and
G =0.6. As we have already noted in the previous
section. the peak occurs earlier and has a smaller
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FIG. 12. Normalized photocounts V(A.0) as a func-
tion of energy detuning & for various values of the field
intensity G =0.3, 0.6, 0.9, and 1.5 for the cases 3, =1,
ys =1, and for a fixed delay time §=4. 8 is in units of
'
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N ALG)

Normalized phutocuunts

Energy detuning &

FIG. 13. Normalized photocounts .V(A,0) as a func-
tion of energy detuning A for various values of the delay
8=0.2,6 for the cases 3, =101, y,=1,and G =1. B is
in units of y; .

value for A=2. This of course accounts for the
narrowing of the linewidth for small values of the
delay time 6. However. when 6 is sufficiently
large, the A=2 curve tinal+ catches up with the

A =0 curve. This behavior can be understood if we
note that for a large detuning the atom is ineffi-
ciently pumped - level a and therefore still a large
number of aton+ ..re avai ubl¢ to be pumped at a
large time. This means a slower depletion of level
a at sufficientlv ..: ze dine when excited off reso-
nance and ads airectly to the appearance of a dip
at line center.

1V. SUMMARY AND DISCUSSION

Under appropnate conditions, time-delayed ob-
servation of the radiation emitted during an atomic
transition can lead to the narrowing of the

w

~

2
N
iIn P* (arbitrary scate)

“rotab )ity P* (orb.trary scale)

2 ]

: - i 6
P) 2 ) # E) 1
Time t

FIG. 14. Probability P2 as a function of time 1 for
two vilues of encrgy detumng A =0 and 2. for the case
Ya=3 ys=1.and G =0.6. s in units of y,'. For
t =>4, InP® is plotted as a function of time ¢ and the cor-
responding scale 1s shown on the right side of the graph.

linewidth or the appearance of a dip at line center.
The linewidth is limited in the small-signal regime
by the ditference in the transition rates involved.
This provides an optical technique that yields high
spectral resolution.

A dip may appear at line center as a result of
the transient behavior of a system subject to power
broadening. Unlike the line-narrowing effect, the ;
width of the dip is not limited by (y, — v} ), and/or
the delay 6. It can be as small as one likes if the
intensity of the driving field is close to the thresh-
old for its appearance. This dip suggests a means
of enhancing resolution involving homogeneously
broadened systems while the Lamb dip is available
to study inhomogeneously broadened systems.

The narrowing of the linewidth or the appear-
ance of the dip is achieved at the expense of some 4
loss of the signal. A recent analysis’® indicates that,
despite the signal loss, time-resolved line narrowing
is highly desirable in a large number of cases. If 4
one tries to locate line center in the absence of
spectral complications, i.e., if we know we have
only one line in the region of interest, then it may 3
be best to let the delay time 8—0 and collect the
maximum number of counts, since the determina-
tion of the line center improves as the square root
of the intensity of the signal. However, if there are
complicating circumstances, such as overlapping
lines, etc., it may be better to use finite delay times
with the attendant line narrowing and/or dip.

We finally note that the results obtained here via
a fully quantum-mechanical theory take exactly the
same form as those previously derived semiclassi-
cally. The origin of this exact agreement lies in
the neglect of spontaneous decay from level {a) to

[b).
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APPENDIX A: DERIVATION OF EQ. (2.7).
THE CASE OF cw RADIATION

In order to derive Eq. (2.7), we first solve Egs.
(2.3}, From Eq. (2.3¢) we have

t
a‘;l(l): —I'MR-I fn diyexpl 1A, -k labu, .

(AD

Substituting Eq. (A1) into Eq. (2.3a). we obtain
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%w,, a'(t)=—iv NM} exp(—iAna®(n) .
(A2)
Similarly, from Eqs. (2.3d) and (2.3b), we obtain
4 +9p |@(= —iVNM - expliAtia®() .
dt Ko

(A3)

¥ 1s given by the same expression except that it 1y
evaluated at k =4,, instead of k =4,

In the weak-field limit (N small, or Rabi fre-
quency G << ¥,. ¥ ). the right side of Eq. (A3}
may be neglected. This means that the major
source of depleting level b is not the driving tield
but spontaneous decay to level d. We then have

a®) = expl ~ypt). (AS)

Substituting Eq. (AS5) into (A2) we then obtain

The decay rates ¥, and y; in Eqs. (A2} and (A3) a®(r) '
are defined as =—i\ .‘\'M,‘;O expl — y, 1) fn dty exp[t —8,, —id, ]
— 12 2 (A6)
Ya= (k T fdﬂ.; M| ]"=Aar ' (Ad) and therefore, using Eq. (A1),
J
—_— ' 1
a‘;lmat—i)zv’NM%UMfl fo dryexpl —y, ~i(A, —ky)]t, foldtlexp[(—ﬁab—iA)tl] . (AT

Substituting Eq. (A6) into (2.6a), or Eq. (A7) into
(2.6b), we immediately obtain Eq. (2.7) for the
time-delayed photocounts.

APPENDIX B: DERIVATION OF EQS. (2.7) AND (2.15).

THE CASE OF PULSED RADIATION

In order to derive Eqs. (2.7) and (2.15) for the
case of pulsed radiation, we first solve Egs. (2.12).
From Egs. (2.12b) and (2.12¢), we have
- 4

a0=d(K)~iM; fo diyexpl —i(Agy — Kt a1},

(Bl)
!

af (0=—iMy [ dt;exp[—ildg—k )iyJat)) .

(B2}

Substituting Eqs. (B1) and (B2) into Eq. (2.12a), we
obtain

d .
E-+—}'a+ya a’tn)
=—i [ dKM T explitag ~k1]btK) .
(Bla)
=—ig(1), (B3b)

where y, and y, are the spontaneous decay rates
from level g to ¢ and b. respectively. and Eq. (B3b!
defines the pulse-shape function g (1.'™"" From
here on we assume that y, is negligibly small.

—
From Eq. (B3b) we then have

t
a’(t)=—iexpl —y,1) fo dryexply,t)igiey) .
(B4
and from Eq. (B2} we have
t
ag (D=t ="M [ dtexpl =y, —i(8, k),

h
bN fu dryexply taigie.) .
(B5)

The time-delayed photocounts N (A,0) can be ob-
tained by substituting Eq. (B4) or (B5) into Eq.
(2.14). V(A.0) depends on the pulse shape through
the function g(r).

For an exponentially decreasing pulse. the pulse-
shape function g (1) takes the form

g =g, exp[( —y, ~iAM], (Bo)

where ¢, is a constant, A=Kk, — A, kg is the cen-
tral frequency of the pulse. and j, is the decay
constant of the pulse. Substituting Eq. (B6) into
Eq. (B4 or (BS), and using Eq. (2.14), we obtain
Eq. (2.7 for the time-delayed count .V (A,0).

For a square pulse of duration r,,. we have

Ig: expl —iAt), O<1t <1,

glt= (BT

{0. S 7Y
wheea 0y g constant, Ay, is again the central tre-
queti., of the pulse, and A =k, —4,,. Substituting
Eq. (B7)into Egs. (B4) and (BS), we obtain

3
)|
i
i
i
i
i
A
1
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i t
)~ig,eXPl—;'at),ﬂ, dryexpliy, —idw ], 0<r<u, (Bl
altty= | v
, .
l—ig, expl —y,1) fn‘ deyexplly, —id ], >t ‘Bt
and, for 1 >,
N ‘0 Il
(lck'!lt):\ ——i)'g,l\'!k-l { fn dryexpl -y it —k )t f“ dryexpfty, —iA,]
t [ i
+ fr dryexpf — 12 -1 (&, — &Mty _,ru deyexpliy, —idn;,] 1 . B9
4]

Substituting Eq. (B8) or (B9} into Eq. (2.14), we obtain Egs. (2.15) for the time-delayed photacounts.
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The basic laws of the phenomenological theory of radiative energy transter are derived, under certain conditions, with-
in the tramew ork of the stochastic scalar wave theory. An equation of radiative energy transter is derived for wave propagu-
tion in a statistically quasihomogeneous medium. Our results relate the extinction and scattering coetticients (which are
introduced heuristically in the conventional theory of radiative energy transter) to the stochastic characteristics ot the

medium.

1. Introduction

The subject of radiative energy transfer through
stellar atmospheres and through turbulent media is
generally treated on the basis of a phenomenological
theory [1,2]. In recent years, many attempts have
been made towards providing a satisfactory basis for
the conventional theory and to deliminate its range
of validity [3—14]. These attempts have met so far
with a limited success.

The central quantity of the phenomenological
theory is the so-called specific intensity of radiation
I(R.s) which satisfies the radiative energy transfer
equation of the form

5T H(R.5) = —a(R,5) I(R.5)

+ [B(R.5.) I(R.s') AR, + D(R, ). (1.1

In this equation the left-hand side represents the rate
of change of the specific intensity along the s-direc.
tion. The first term on the right represents “‘extinc.
tion™" due to absorption and scattering, the second
term represents a contribution due to scattering tfrom
all directions (the integration extending over the com-
plete 4n-solid angle generated by the unit vector s')

* Research supported by Air FForce Oftice of Scientitic Re-
search (AFOSR).

and the last term represents the effect of sources. The
functions a(R,s). 3(R.s,s’) and (R .s) are the so-
called extinction coefficient, the differential scatter-
ing coefticient and the source tunction respectively.

In the usual heuristic model, the specitic intensity
I(R,s) is treated as a radiometric quantity and the
equation of radiative energy transter is derived by an
intuitive quasi-geometrical argument involving balance
of radiant energy, without elucidating the microscopic
meaning of the extinction and scattering coetficients
and of the source function.

In this paper we invesuigate the foundations of the
theory of radiative energy transter and derive an equa-
tion of radiative energy transfer in a randomiy tluc-
tuating medium on the basis of scalar wave theory.
Our results elucidate the relationship between the
extinction and scattering coetticients and the stochas-
tic characteristic of the medium.

2. Relationship between the specific intensitv and
the coherence function of the wavefield

We consider a random scalar wavetield i(r). The
second-order-coherence function of the wavetield
is given by

T ) = ) ey . (1)

In eq. (2.2), the sharp brackets denote the ensemble
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average, The coherence function I'(r) .r5), when ex-
pressed in terms of the new variables

R=3(ry+r) r=r -1, (2.2)

will be denoted by I'(R,r) ...
N(R.ry=T(r,.ry). (2.3)

The ensemble average of the energy density L(R)
and the ensemble average of the energy flux F(R) are
related to the coherence function of the wavefield
by the following equations [7]:

LRY= (L'O(R.0),  F(Ry=(L'ik )[, (R.r)|

2.4)(2.5
where ¢ denotes the speed of light in vacuo and
is the wavenumber in free space.

Not long ago, Wolf [12] formulated a rigorous
theory of radiative transfer in free electromagnetic
field. In his theory, two quantities are introduced
which relate to energy transport: the so-called *‘an-
gular components™ of the average electromagnetic
energy density and of the average Poynting vector.
In analogy with these quantities. we introduce the
angular component of the average energy density
((R,s) and the angular component of the average
energy flux T(R,s) by the following relations:

FR)= [T(R.5)d.
(2.6)2.7)

The integrations in eqs. (2.6) and (2.7) extend
over the whole 47-solid angle generated by the unit
vector s. If we define the spectral density f(R.K) of
the function I'(R, r) with respect to the variable r
by the formula

UR)= [ OR,5)d2,

fRK)=(2m) 73 [TR,nexp(—iK-NdK,  (28)

then, in view of egs. (2.4)—(2.7). we obtain

OR.9) =1 [ fRKIKT K. (29)
V)
- S F EPTC
T(R.s) ,\—,nnff(k.ml\ dK. (2.10)

Equations (2.6) and (2.7) are analogous to the «
pressions of the phenomenological theory of radia-
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tive transter for the “space density™ of radiauon
L(R) and for the net 1lux F(R). at R.in terms of the
specitic intensio of radiation /(R s). viz.

U(Ry=— [IR.5)de2. (2.11)

i ~
C

F(R)= [s I(R.5)de2. (2.12)

A comparison of eq. (2.11) with eq. (2.6) suggests
that the specific intensity of radiation /(R .s} can be
related to the angular component of the energy Jen-
sity (R, 5) by the imple equation

I(R,5)=cQ(R,s). (2.13)

In view of eq. (2.9), we can write

IR.5)= [ f(R.KVK" K. (2.14)
0

The expression (2.8) for the spectral density s(R.
K). combined with eq. (2.14). gives a relationship be-
tween the specific intensity of radiation and the co-
herence function of the wavefield which seems to
have been considered first by Ovchinnikov and
Tatarskii [15] . Recently, on the basis of this defini-
tion, rigorous equations have been derived by the
present author for radiative transfer of energy and
momentum in free space in the presence of random
source distribution [14].

It is clear from eqs. (2.7) and (2.10) that. with
this definition of the specific intensity, the usual flux
relation (2.7) is. in general, not obeyed. The condi-
tion under which the radiometric and field theoretic
definitions of energy flux coincide. is given by

JTR.s) a2 = [ s KR 5) 4. (219

On substituting trom eqs. (2.10) and (2.14) for 7 and
I, eq.(2.15) becomes

[stk k)R KK =0, (216)

where, as before, s represents the unit vector along K.
Consider a solution of eq. (2.16) of the form
SR.K)= [(R.5)B(K Ky Vkj. (217

On taking the Fourier inverse of eq. (2.8) and sub-

i i i R i K. . . ..
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stituting for AAR. K} from eq. (2.17). it tollows that
PRy = [ 1R s)explik, s-ryde. (2.18)

This representation of coherence tunction has been
adopted by many authors in their investigations on
the foundation of the theory of radiative encrgy trans-
fer.

In a recent paper. Collett, Foley and Wolf [16)
have shown that it. for propagation in free space, the
coherence function I'(R, ) admits the representation
eq. (2.18) then the wavefield v(r) is necessarily statis-
tically homogeneous. Furthermore one can establish
the following theorem: Theorem 2.1: The coherence
function [(R,r) of the wavetield in a statistically
homogeneous medium is independent of R, (i.e., is
a function of the difference variable 7 only) in the
special case when the incident tield. which satisties
the free space wave equation, is statistically homo-
geneous, at least, in the sense of second-order co-
herence theory.

It is also apparent from egs. (2.8) and (2.14) that,
when the coherence function of the wavefield I'(R,r)
is a function of the difference variable r only, the
specific intensity /(R,s) is independent of position.
ie.,

KR .5) = Is). (2.19)

In that case the free space radiative energy transfer
equation

T l(R.5)=0 (2.20)

is trivially satisfied.

Using these results. it may be shown that the rep-
resentations eq. (2.17) or eq. (2.18) cannot be adopt-
ed to derive an equation of radiative transfer with
non-vanishing extinction and scattering coefficients
in statistically homogeneous media.

In this paper we consider wave propagation in a
statistically inhomogeneous medium and show that
the representation of eq. (2.17) for the spectral den-
sity f(R,K) may be used when certain assumptions
are made concerning the incident field and the ran-
domiy fluctuating medium.
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3. Wave propagation in a weakly randomly fluctuating
medium

The propagation of the space-dependent purt :ur)
of the scalar wave in 2 medium with random luctuia-
tions of the dielectric constant js governed oy the
stochastic scalar wave equation

('.‘3+kf}(lr)w(rl=0. (3.1)

where k3 = wrc 1s the wave number o1 the tield in
free space and e(r) is the dielectric constant. If the
fluctuating dielectric constant exhibits only small
departures from its mean value, which for simplicity.
is assumed to be unity. then 4 representation in terms
of a parameter u may be adopted **:

e(ry=1+pue (r). (3.2)
where
u<(k011)‘2, {3.3)

with /; denoting the smallest correlation distance of
the dielectric constant tluctuanon €, (7). Since we as-
sumed (e(r)) = 1, we have (e, (r)» = 0. Moreover the
random function € (r) is assumed to be a gaussian
random variable.
On substituting from eq. (3.2} ineq. (3.1) we ob-

tain

02,2 2 : N
(V7 + kyur) = —kgue, (). (34
If we recall the definition (eq. (2.1} of the second-
order coherence function of the wavetield Tir .71,

it follows from eq. (3.4) that F(’l .r+) sausfies the
equation

(V% - VE)I_‘(rl )= —l\‘éu[(el(r1 yetr et

1

G LALLM (P (3.5

Let us assume that the ticld variable »(r) can be
expressed in a perturbation expansion [17.15)

M) = v (r) + up, (1) + O ). (3.6)

Upon inserting from eq. (3.6) into ¢q. (3.4) and
equating to zero the coefticients of the zeroth and
of the tirst powers of i, we obtamn

(T4 kQywytn =0, (27

*I We assume max. ey(ry ~ 1. In that case u represe Lhe
strength of the diclectric constant fluctuations.
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(7K ) = ke (Pr). 38

The solution of eq. (3.8) can be expressed as

v (0= k3 [Gy(r ~ PYe, (PIuy(PY &P, (39)
where

| explikylr - pi)
Go(r<p)——ﬂ—'—l—r:pl“‘— (3.10)

is the (outgoing) free space Green's function of the
Helmholtz equation with wave number k.

We now expand the terms on the right hand side
of eq. (3.5) to the lowest non-vanishing order in .
Since (e, (r) = 0. it follows from that perturbation
expansion (eq. (3.6)), (neglecting the terms of order
u3), that

(72— THT(r, ) =K [1Gor, ~ P Typ.ry)
+G(ry ~P)Ty(r,.2)) B(r, .p) P

- kg ﬂGo(’l -pTp.r)

+Gylry ~ P To(ry,p)] Blp.ry) dp, 3.11)
where
B(r,.ry)=BG(ry +ry),r = 1) = pz(el(rl Ye (ry0,
3.12)

Tyryory) =ToGlry +ry)iry —1y)
=<v0(rl)va'(r2)). (3.13)

We now change to the variables R and r which are
defined by eq. (2.2). In terms of the new variables,
eq. (3.11) can be shown after some rearrangements,
to take the form

2V, V,T(Rr)
=k [1G,(P)B(R +5r —1p.p)Ty(R ~ 1p.r—p)
~GP)BR - ir—1p,p)Iy(R—ip.r+p) &°p
~ k8 [1G,P)B(R ~ }p.r —=p)Ty(R - 1p.r - p)

~G3(p)B(R ~ p.r +p)Ty(R — ip.r+p)] d°p.
(3.14)
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4. Derivation of the equation of radiative energy
transfer

We will first make certain assumpuons concerning
the incident wavefield v((r) and the dielectric con-
stant fluctuation ¢ (r} which simplify eq. (3.14) con-
siderably. We then proceed to derive the equation of
radiative transfer satisfied by the specitic intensity.

Let us assume that the incident field is statistical-
ly homogeneous, at least in the sense of the second-
order correlation theory. The coherence function
I',(R.r) then depends only on the ditference variable
r.ie.,

[(R.PYST,(r). (a.1)

Next we assume the random medium to be quasi-
homogeneous, i.e., the coherence function B(R.r)
of the dielectric constant fluctuation is assumed to
be a “slow™ function of R and a “*fast™ function of
r. If L. denotes the distance over which B(R.r) re-
mains sensibly constant with respect to its first ar-
gument, then, in view of the quasihomogeneity of
the medium,

L>1, (4.2a)

where /; is, as before. the smallest correlation dis-
tance of the fluctuations in the dielectric constant.
Furthermore we assume £ to be much larger than the
correlation distance /5 and the wavelength 27/&q ~f
the incident field, i.e.,

L>»1,, I'»2n'k,. (4.2bc)

Thew asalinptions are satisfied in many problems
of practical interest. A frequent model to describe
a random medium e.g., the earth’s atmosphere as-
sumes quasihomogeneity. In many cases of optical
propagation through atmosphere the conditions (eq.
(4.2a)) and (eq. (4.2¢)) are easilv satisfied. The as-
sumptions (eq. (4.1)) and (eq. (4.2b)) are obeved by
fields of thermal origin e.g.. the blackbody radiation
which is both statistically homogeneous and isotropic
and whose correlation extends over distances of the
order of the wavelength associated with the frequen-
cy of the radiation at which the energy transfer is
being considered.

In view of the assumptions (eq. (4.1)) and (eq.
(4.2)), we can simplify the various terms on the right
hand side of eq. (3.14). Since the incident field is
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considered statistically homogeneous, the first term
can be written as

- . 3
J(}n(p)li(k +ir ip.p)NR - ipr—p)dp
= [Gop BIR +ir —3pp)Ly(r —p)d®p.  (4.3)
In view of our assumption (eq. (4.2b)), B(R.r) is con-
sidered a “slow™ function of R and ['y(r) is consider-
ed a “fast™ function of r. Under these circumstances.
we can replace B(R +ir — i p,p)by B(R,p) on the

right hand side of eq. (4.3) without introducing an
appreciable error. We then obtain

[GupBR +Yr — ko o)y (R - Lpor - p)dp
=[Gy @) BR.PITy(r — p)d3p. (4.4)

Similarly,

JGAPIBR ~ §r - 1p.p)Io(R — tp.r+p)dp
=[GV BR.p)Ty(r + p) p. (4.5)

The third and fourth terms on the right hand side of

eq. (3.14) can also be simplified by using egs. (4.1)
and (4.2b), and one obtains

[Gy@)BR ~3p.r —p)Iy(R - Lp.r —p)dp
=[G,V BR.r — p) or ~p)&p. (4.6)
JGAPIBR — Lp.r+p)Ty(R ~1p.r+p)d’p
= [GXP)BQR.r +p)Ty(r + p)dp. @7

On substituting from egs, (4.4)—(4.7) in eq. (3.14)
we obtain

27,9, IR, =k¢ [[Gy(p) 1y(r —p)
~G(p)Ty(r + )] B(R.p)&’p
k3 [16,@) BR.r —p)T(r ~p)
~Gy(P)BR,r +p)T(r +p)] a3p. (4.8)

If, on the right-hand side, I'y(r + p) is replaced by
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I'(R.r = pythen. in view of eq. (3.0). an error of the
order g is introduced which is neglected in the pres-
ent lowest non-vanishing order perturbative analysis
[17]. Thus. to the second order in g,

2Tg VR =k [ (G TR — )
G (R.r +p)) BRR.prd*p
&k} (6P BR.r - pIIRr - p)
- Ggp)BR.r +p) 1 (R.r +p)] &°p. (49)
Next we take the Fourier inverse of eq. (2.8) to
express I'(R.7) in terms of the spectral density 7(R.
K).ie..
[(R.r) = [f(R K)exp (iK-r)d*K. (4.10)
Moreover we define the spectral density (R . K) of
the tunction B(R,r) by means of Fourier decomposi-
tion with respect to r.
B(R,r)= [ W(R,K) exp (iK-r)d’K. (4.11)
It can be shown that &R, K) is a real function. In-
serting eq. (4.10) in eq. (4.9) and using eq. (4.11).
we obtain after some rearrangement
0 REY= kS | [0 K kosyde | TR
Tg J(R.KY= -3 nkq Usb(R.K ~ ko1, RK)

+ ik 8(K — ko) [ MR.K —KVHR.K1EK.
4.1

This integro-differential equation for f{R.R) can
be recast into the following integral equation **:

f(R.K)=f0(I\’)exp{—f dv” A(R x"s.K)‘l
[\ :

+5(K k) [ &'BR - x's.K)
0
[ F
Xexp| [ de" AR ~.\'"s.K):. (4.13)
4]

2 The derivation of €q. (4.16) can be carnied out on the
same lines as in Ch. 2 (Sec. 6) of ref. [2].
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wherte
RIS E 1 fl‘ (ryexpt iKendir. (4.14)
0 S
(2ry
nka - )
ARKy = [MREK - kysHdo,. (4.15)
S
BR.KY=== [#R.K - KWARKVIK.  (4.16)
3K

Since the incident field is assumed to be statistically
homogeneous, it can be shown that (ret. {12]. appen-
dix B)

S EY =1 (ISR~ kKD, (4.17)

On substituting eq. (4.17) in eq. (4.13). it becomes
obvious that f(R.K) is of the tform

FR.K)Y= (R S)S(K ~ k)ikp. (4.18)

This relationship between the spectral density f(R,
K) and the specific intensity /(R.s). which is a na-
tural consequence of the assumptions made in this
and the previous sections, has been shown. in sec-
tion 2. to satisty the “‘space density™ relation (eq.
(2.11)) and the energy tlux relation {eq. (2.12)) of
the phenomenological theory.

If this expression for f(R,K) is now substituted
in eq. (4.12), then after integration over K'. [d3K
=K'2dK" 42}, we obtain the following equation:

s-VRI(R.s) = —a(R.$YR.5)

+ [ AR5V IR VA, (4.19)
where
oR.5)= 4k} [ DR kols - NI, (4.20)
BR.5.s") = § k3 DR k(s — 5. (4.21)

Eq. (4.19) is of the same form as the equation of
radiative energy transfer of the phenomenological
theory (2]. Our formulae (eq. (4.20)) and (eq. (4.21))
relate the extinction cvefficient and the scatt~ring
coetficient § to the stochastic ~karactericiics of the
medium.

It is apparent from eqs. (4.20) and (4.21) that

320

OPTICS COMMUNICATIONS 1 June 19si

and J are connected by the relation

oAR.$)= [ J(R.5.5)dE2 . (4.22)
This equation, which is a consequence of the conser-
vation of energy. implies that the extinction of a
wave propagating along the direction s is due to the
scattering in all other directions.

It is a pleasure to acknowledge the encouragement
and assistance of Protessor f:mil Wolf during the
course of this work. The author is also gratetul 10
Professor M.O. Scully for his support.
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The steady state gquantum statistical properties of 4 two-photon laser are presented tor the case when the cavity loss
mechanism s simulited by a single-photon process,

1. ntroduction, The success of the quantum theory of lasers mvolving a single photon emission per atonue
transition [1] has generated a great deal of interest in the possibility of achieving laser action involving the stuma-
lated emission of two or more photons in a single atomic decay. The two-photon laser has the prospect of achiev-
ing high beam intensities since the strength of the coupling between the laser-active atoms and the light tield is
proporuonal to the light intensity in contrast to the square root of the light intensity in the one-photon laser,

Several authors [2—7] have studied the photon statistics ot a two-photon laser on the basis of a model similar
to the laser model of Scully and Lamb [1]. The model consists ot a coupled svstem of a tield and identical two-
level atoms. The lasing levels of the atoms are assumed to have the same parity under the usual dipole approxma-
tion for the two-photon transition to take place. The atom--field interaction for the two-photon emission process
may be described by the effective hamiltonian [8]:

Hy=g50%2+ 073, (0
where ¢, is the coupling constant given by
g: = “lzllt'll/'[lz .

. N . o Y . . R N .
uya is the matnx element for the two-photon transition, and |£]~ has the dimension of ficld intensity, the atom
operators ¢ and ot are detined by

(VI 0 0
()

0 0 ‘10
and @, q* are the annihilation and creation operators of the ficld. The cavity losses due to the transnussion of
laser light through the end mirror are simulated by another set of two-level atoms which are pumped in the lower
level at a constant rate and which can make a transition to the upper level by absorbing laser phiotons.

In most of the studies on the quantum statistical properties ol the optical field of a two-photon laser [2.5.0],
it is assumed that the end mirror of the cavity is transmitting at the sum frequency e, e, the two-level atoms
which simulite the cavity losses absorb two photons to make a transition from the lower level to the upper level.
The restriction to a two-photon loss mechanise is made in order 10 retan the property of detaled balance, This
maodel for the cavity losses 1s unrealistic since the photons do not escape in pawrs, On the basis of this model, it
is predicted that, in single- and two-mode two-photoen lasers, the photon distribution ©ractions are nartower than
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in the single-photon laser.

It is of considerable interest to investigate the quantum statistical properties of a two-photon faser when the
cavity loss mechanism is simulated by a single-photon process, Some authors have approached thus problem using
perturbation methods [3,7]. In this paper, we present an exact solution of the master equation that describes a
single-mode two-photon laser with a single-photon loss mechanism, We alsc derive expressions tor the mean pho-
ton number and the relative tluctuations of the numbper ot photons hie™ ibove threshold,

2. Photon distribution function. We start with the equation of motion tor the photon distnbuton tunction
p(n) in a single-mode two-photon laser. The master equation can be obtained in a straightforward manner by foi-
lowing the same method as that of the Scully —Lamb theory of a single-photon laser {11. The resulung equation 1s

apun) Astrtlun+ 2) Asnon - 1)
: = - 4 P+
ot 1 +(By A+ 1)n+2)

_D Y e Y
i +(B:,,.‘12)u(n H pn—=2Yy+Cln+ Dpn+ 1) - Caplny, ()

where, similar to the Scully - Lamb theory, -4~ and 8, are the yain and saturanion parameters tor the two-photon
gain mechanism and Cis the {oss parameter which is related to the laser frequency w and the @ ot the cavity by
the following equation:

C=w/Q. (RA]

In eq. (2), the term proportional to p(n - 2) represents the two-photon emussion process, whereus the term pro-
portional to p(n + 1) represents the single-photon absorption process. It is thereture evident that the detmled
balance condition is not obeyed in the present case, This makes it more complicated to solve eq. (2} even in the
steady state.

In an eadier paper [9] on the effect of covperative atomic interactions on photon statistics in a single-mode
laser, we encountered a master equation which also included two-photon emission and single-photon absorption
processes. We solved this equation in steady state using a matrix approach. The same approach can be applied 1o
the present problem.

In the steady state [9p(n)/3r = 0], we obtain from eq. (2),

ayp(M) + by_opn = 2+ pln +1)=0, (3
where

+ +2 3
o = (n+ D +2) b, = (n+1)n+2) en = (C A, (Saba)

T (By AN+ D+ ) T4 (By At D+ )"
It is clear from eqs. (Sa—c) that
dp tb,+c,=0. (o)

In matrix notation, eq. (4) can be rewritten as

laO "] \ ’p(o)\\

fO ay ¢y, ‘{p(l)‘ ¢
by 0 . ‘ i =0,

{ .

v b" |

oL .

\ ', [ A (7)

It can be shown, by the method of induction, that the solution of eq. (7} is given by the follawing eqgudstion.

~ - e -
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puny = "ql /‘I)”.'_,)‘((U:" My . (5)
where

dg, [

0 u ]

ho 0
Min) = det :

. A
Y by 3 0 4y )

[0 ey (%) p(OY s determuned trom the normalization condition X77_ p(r) = 1. By using the properties of the de-
termunant and relation (00, the determinant M) can be shown 1o be expressible in the tollowing torm:

‘o, . 0
by s
Mon = det -,
hies
\ U b~ .
h +oy
. . . - (1o
On subsututing trom eq, (10010 eq. (). we obtan prry as the tolowing product of conunued tiacuons:
" ! ’7, 2(’ 1
pLa) =)y I Coh e
relotr h .
’), e r }(, b
Lo (n
by

This expression for piay together with the expression ot b, and ¢, [er. eqs (3hey] completely determimes the
photon statistics ot a two-photon Laser

S Photon numiber thectuattons ugh above threshold, We now consider the photon distiibution tunictiion ot the
two-phaton kiser. when the laser operates hich above threshold, a regime i which the photon distribution tune-
ton ot a sigle-photon laser s deseribed by a Poison distnibution, For g Porsson distribution, the fluctuation
the number of photons is unity e,

Al Al Al
(M) n-> "o

" () = (1)

For a two-photon faser. operating high above threshold, we have = (45 #8437 2. Under this condition g ()
can be simphtied considerably by neglecting 1 an the denonunators of the first and second terms of the lett hand
side. We then obtan

N

dpgey dr = LI:: Baptny + L-I:: Bapta, it Dpn+ 1) Cipn) . (AR}

This equation can casity be solved, in steady state, using the following generation function:
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ex)= 2 x"p(n). (14)
n=0

The generating function g(x) obeys the following equation:

dg/dx — (A3/B,O)(1 +x)g =0, (15)

This equation can be integrated and the resulting equation is

8(x) = exp[(43/2B,0)(x2 + 2x - 3)] . (16}

It is evident from eq. (13) that

(n)=ad§' o <’12>=(92€+3§)'— . (17a,b)

x=1 dx~ x=1

It follows, on substituting from eq. (16) in egs. (17a,b) that
m=24%3B,C. (am2m=}. (18a.b)

According to cq. (18b), the photon distribution function for a two-photon laser is wider than the Poisson distri-
bution. This result is in agreement with that of Golubev [7] that the relative fluctuations of the number »f pho-
tons in a two-photon laser cannot be smaller than in coherent emission,

It is a pleasure to thank Professor M,O. Scully for his support.
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A density matrix method is used to obtain an exact solution for the reduced density matrix of the
field in an arbitrary multimode m-photon absorption process. The results of some earlier
specialized studies of photon statistics in multiphoton absorption process can be recovered from

b S A i+ e

this solution.

It is well known that nonlinear interaction of light with
matter changes the quantum statistical properties of the
light field.' The changes of the photon statistics depend on
the interaction process and on the initial conditions of the
field.

In this paper we consider a multimode m-photon ab-
sorption process. The multiphoton absorption processes
have recieved a great deal of attention in recent years due to
the possibility of producing a radiation field which shows
photon antibunching. The photon statistics of two-photon
absorption process was studied using a generating function
approach and exact expressions for the photon distribution
function were given in single-mode™"* and two-mode® pro-
cesses. The off-diagonal elements of the density matrix of the
field in the single- and two-mode two-photon absorption
processes were given by Simaan and Loudon.”* Paul, Mohr,
and Brunner” studied the photon statistics of m-photon ab-
sorption process on the basis of an approximate procedure.
Recently, an exact analytic solution of the master equation
describing single-mode m-photon absorption has been ob-
tained by Zubairy and Yeh'’ using a density matrix ap-
proach and by Voigt. Bandilla, and Ritze'' using a Laplace
transform method.

In the present paper we extend these results to arbitrary
multimode absorption process. We begin by considering the
master equation which describes a multimode m-photon
process. We present the exact solution of the reduced density
matrix of the field using the matrix approach.'’ Due to the
general nature of our problem the results of the earlier stud-
ies can be recovered in the appropriate limits.

We consider a coupled system of a field and V noninter-
acting two-level atoms in their ground state. The number of

|

do(n,, ...n;n, + K, ...n + K;7)
dr

where r = 28"t and

1] n! !
any, ., MM, g B = -5 N——+11

“Research supported by the Air Force Office of Scientific Research, and
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=a(n, ..,nin +K...n +Kyn,...n.n+ K, ...n +K:7)

+b(n, +xpn +xon +x,+Kon +x, +K)
Xp(ny + Xyy oty + x50+ X+ Ky oom +x, + K0 7)), 4)

= x ) SN —x)!

0022-2488/80/112690-03$1.00

atoms N in the lower level are assumed to be maintained
constant by some external influence. We assume that the
atoms make a transition from the lower level to the upper
level by absorbing m photons; x, photonsinmode /(2 = 1. 2,
...y I 1< m). We then obtain

ix,:m. b
’ ]

The single-mode situation corresponds to the case when one
of the x,"s such as x, is equal to m and all the rest are zero.
The reduced density matrix g, of the field can then be shown
to satisfy the following equation of motion using the stan-
dard perturbation techniques

% (e (e
x(l 'aj‘)ﬂ;,("‘d,“)( u)] ) ,

where 8" is the absorption coefficient for m-photon absorp-
tion, and 4", 3, are the photon creation and destruction oper-
ators of the ith mode, respectively. In Eq. (2) the saturation of
the absorbing atoms 1s neglected.

We denote the state in which there are n_photons in the
ithmode i =1,2,..../)by tn, n...n.). The equation of
motion (2) for 4, can be translated into an equation for the
matrix element

pn.onin +K.on + K.
={n,..m|p,n, + K, ..n +K). 3

of the reduced density matrix by evaluating the matrix cle-
ment of each term in Eq. (2) between the appropniate Fock
states. The resulting equation is

n'!
! \ (Sa)
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! nin' 12
bing .omin o) =[] ——————— {5bi
v, — x)i(n, — x !
Following the method employed in Ref. 10, we first express Eq. {4} in the matrix notation
_‘3_/,_' AT =M p (7 16)
ar’ ' ‘
where
Pl i i+ Ko, + K37
pliy+xp iy +xs L+ Ky +x000 +K + x5 07)
p. An = : , T
pliy+mxy, i, +nx; L+ K +nxy, o f + K+ nx,007)

Mmyy Mgy

M = my, m; C) i8)
/—“\\

( ) m,, m

N

nan o4

In Eq. (8), the elements m, are given by the following
expressions

m, =a{f, +jx. ... b + jX;;
L+ K, +~jx 0+ K+ x,), (9a)
m,  =bli, +(j+x, i +j+ Ik,
L+ K, +(j+xy, 0, + K, +(j+ lix,), (9b)
forj =0, 1,2,
The solution of Eq. (6) or Eq. (4) can be expressed in the

form
pliy+nx, .., i, +nx; i)+ K, +nxy, i, + K, + nx;:7)

=Y Ya By e Upliy+qxy o dy +qxy;

s g O
Xiy + K, + gx,. ....i,+K,+qX,: 0), (10}
where A,, , are the eigenvalues of the matrix M, . ie.

they satisfy the equation,
det[M,  —AI]=0, (t
(I being the unit matnxj,a,” ™ is the nth element of the right
eigenstate of M, , corresponding to the eigenvalued,, .
1

play, ..nni..ni 1)

154

and 3" " is the gth element of the left eigenstate of M
corresponding to the eigenvalue A, | The matnx ele-

mentsa,” “andB."  canbeshown toobey the following
recursion relations

Vg Sy, [T .
m, ,, a,’  +m, ,.a, =ma, ., 11244
m, B, " +m,B, =m.,f, 12y

By solving Eq. (11) and by iterating the recursion relations
(12a) and (12b), we obtain

A, ., =m,, (13
1)
Vi ' n L RS,
a,” =% S.oa\m, -m ., (14
0 n>s,
(=)
iy i r[ -———_—“ q/"
B, "= V\m ~m, (15)
0, ges.

Hweletn =0,i, =n ,andK =n - n(j= L2 {hink
(10), then. on substituting from Eqgs. (9a). (9b), and (13)-
(15), it follows

S b(n,+rx, .0 +rx;n +rx,, .. 1 rx)

= ;:in vi

r#s

U LT PN

Xe

This equation, combined with the expressions fora’sand b s
[cf. Egs. (5a) and (5b)}, completely determines the time evo-
lution of the density matnx. The photon distribution func-

tion pln,, ..., n,; 7} = (n\, ..., 0,6, |ny, .... n,) can be deter-
mined from Eq. (16) by putting n; =n, (j=1,...1).
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A ofatn, +sx,.on +sxpny Fsxan] Hsx) —alny Xy, on A rxgon 4rxg 0+ rx)]

ML W S 4 @Ry My + X R + @y, )+ gx,, O). 16)

—
We now show how some of the carlier specialized re-
sults regarding multiphoton absorption processes can be ob-
tained from Eq. (16).
In the case of single-mode m-photon absorption pro-
cess, one of the x,'s (say x,) is equal to m and all the rest are

M. S Zubary 2691




zero. We then obtain, from Egs. (5a) and (5b), that n'ni! b2
b(n; n})= T (17h)
- m)!

) 1 n,! n! (n, — m{n;
a(n; n))= —— + ., (17a)
2\(n, — m) (n;, —m) If follows from Eq. (16) that 4
plng; ni; 7
d 2 lq B 1 Le myyr
_ | M ,b(n, + mr, n, +m") euln. + many . ;p(nl +mq, "; + mg; 0) (18)

S =M an, + ms: ny + ms) — a(n, + mr; n) + mr)]

rEs

After making some rearrangements, this equation can be shown to be identical to Eq. (31) in Ref. 10 (see also Ref. |1 for the
case n, = n;). We have discussed some aspects of photon statistics in single-mode m-photon abosorption process. such as
photon antibunching, in that paper.

As another example, we consider m-mode m-photon absorption process. In thiscase,/=mandx, = W= 1.2,....m).
The expressions for ¢ and b in Egs. (5a) and (5b) then become

a(ny, ..ononon)= —\non, +n.0n ] (19a)
by, .on,; Al )=y, 0, ) (19b)

Moreover, from Eq. (16), we obtain the following solution for the density matrix

pla,....nni..n. 1)

\‘S"’u (,E‘ W e, + sy cnn, +5 0 5,0, +s)—a(n, +r, an, w0+, 0+ r}

ey

ne b +r,.on, +r,n, +r,...n, +7r)

N A LR Y Ay A ) (20)
—
Simaan and Loudon®* have discussed the case m = 2 in ACKNOWLEDGMENT
some detail. Equation (20) together with Eqgs. (19a) and The author is extremely grateful to Professor M. O.
(19b), after some rearrangement. can be shown to reduce to Scully for his support.
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Intensity correlations 1n a two-rnode laser oscillating on two coupled transitions have been studied by means of the
Fokker-Planck equation. It is shown that they can be expressed in terms of the eigenvalues and eigenfunctions of a
one-dimensional Schrodinger-type equation. It is found that near threshold intensity correlations cannot be
approximated by a single exponential. For moderately large excitations, however, a single exponential dominates.
Approximate analytic expressions for large excitations have been obtained which show that the correlation time

increases with increasing excitation.

1. INTRODUCTION

Recently a quantum-mechanical treatment of
laser oscillations on two coupled atomic transitions
has been given.'! In that treatment a set of humo-
geneously broadened three-level atoms interacting
with a two-mode electromagnetic field in a uni-
directional-ring configuration was considered.
The atomic-level configuration that was con-
sidered is usually referred to as the “A” con-
figuration in the literature on three-level atomic
media.’ It was assumed that each transition sup-
ported a distinct mode of the electromagnetic
field. A master equation for the photon distribu-

1

tion function was derived under the conditions

of perfect resonance between the atomic transition
and the corresponding mode frequencies. This
equation was solved in the steady state and the
fluctuation properties of the optical field were
discussed. One of the principal conclusions was
that the intensity fluctuations do not, in general,
die away with increasing excitation. Small asym-
metries 1n gain may change the statistical proper-
ties of the two modes significantly. These effects
are, of course, the result of mode competition.
The question that presents itself now is how does
the mode competition affect the correlations and
other time-dependent phenomena. This paper
answers this question partly.

II. TIME-DEPENDENT FOKKER-PLANCK EQUATION

The starting point of our discussion is the master equation for the photon distribution function p{r ,n,)

derived in Ref. 1, viz.,

Aln, +1)

An,+1)

d -
2P == T B7 AN, vy v 2P ) T T B A,y 4 2

)P('lp”z)

+Cy(n, +1)p(n, +1,n,) +C,(n, +1)p(ny, n, +1)

An,

An,

1+ (B/AY(n, + 0, + 1)p("1 =1,n,)+

=Gy p(ny,ny) ~ Cona p 1y, my)

1+(B/A)n, +n,+1

)p(nl,nz- 1)

1)

Here p(n,, n,) = p{nyny; nymy58) is the diagonal element of the density matrix operator of the optical field,
n,, 1, are the occupation numbers of the two modes and A, B, and C, are the gain, saturation, and the loss
coefficients, respectively.! This equation will now be converted into an equation for the quasiprobabitity
distribution gunction ¢ for the complex field amplitudes by using the coherent-state representation of the
density matrix of the electromagnetic field.® The Fock-state elements of the density matrix operator are

related to ¢ by

PRENLEI N z,aﬁBﬂ‘Bf’B{"i

pln g ningst) = f‘b(ﬁ, B By g )

23

(I nitnln
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where g, is the complex field amplitude associated
with the ith mode in the coherent state of the
field. In what follows, our interest will be con-
fined mainly to the intensity correlations so that
we will not be concerned with the dependence of

¢ on the phases 4, and 5,. Such dependence would
be needed for a discussion of the amplitude corre-
lations but the problem in that case turns out to be
rather complex. Now, the relevant intensity dis-
tribution function P(l,, l,,¢) that is needed to cal-
culate intensity correlations can be projected out
of & simply by noting that it is determined solely
by the diagonal Fock-state matrix elements of the
density operator. The two are related by

plnngnngt) sp(n,,n,,t)

IP(I,.I the '3*;[;’7 didi,.
n,!

3)

We also introduce an auxiliary function by
-1
w(n,,ng) = (1 +=(n, +n, +2)) plng,n,)

1 2
= J w(ly, I, e 1~ —Lf, -1—’", dldl,. (4
URIEA

Using Eq. (4) we obtain the following set of coupled
differential equations:

[°] ] 0 3 2]
‘,,-t'l"(ll,lz,l)——A(BTl 1 +5—l;12 - gl_ll‘ o,

8
AT )"(1"1

a
+(C‘a_ll[‘+c'81 )p(/,,1,,t)

(5a)
and
(5b)

These equations can be solved exactly in the steady
state and the corresponding solution was discussed
in Ref, 1. The general time-dependent problem
for p(t,,1,,¢) is very complicated because it does

not seem feasible to obtain a closed equation either
—J

3 3 8,9 8
A(B_I,l"'aglzlz—ﬁl*;}: 81 'al)(l+ !, +I)) f“+C(al
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for ¢ or p. However, if we take recourse to the
scaling argument a closed equation for £ can be
obtained. This argument works as follows: smce
B/A is typically ~10® so that to a very good ap-
proximation the derivative terms (B "4 (s 3/ )
can be ignored compared to (B: A)/, 1n £q. ({5b)
which then 1s easily solved to give
- P
1+(B/ANL, +1,)

On substituting Eq. (6) into Eq. (5a) we obtain the
following closed equation for P({,,/,,!):

dap _ 3 3 3, 9
E--A(all 1‘ * alzlz_ all 11 aIl

3 =1
- 1,81)(“ a, +1)> P

3 )
+(C,31—111+C,37;12)P. (3]

Note that Eq. (7) has the formal structure of a
Fokker-Planck equation and is the desired equa-
tion that will form the basis of the discussion in
the rest of the paper. We emphasize that the ap-
proximation made to reach at Eq. (7) is not the
weak-signal-limit approximation and does not
restrict the validity of the above approach to the
region near threshold.

The effects of mode competition are more inter-
esting when both the modes have equal losses. We
shall therefore consider this case first and put
C, =C,=C in Eq. (7). The general probiem with
unequal losses is still quite complicated. We shall
consider this problem later. With equal losses
for the modes we now look for the general solution
P(l,,1,,t) of the form

(6)

PUL L= Cnfoally, Lo mt (8)
Lm

where C,, are the coefficients to be determined
by the boundary conditions and A, is the eigen-
value of the differential operator on the right-hand
side of Eq. (7) associated with the eigenfunction
f.m- The differential operator depends on two
variables {, and /,, therefore the eigenvalues and
the eigenfunctions are labeled by two integers
L,m. The eigenvalue equation is obtained from
Egs. (7) and (8) to be

L VR ®

In order to solve Eq. (9) we first try a substitution of the form

Srally, ) =N eV g el a)

(10)

where U{l,,1;) is some function of J, and I, which will be chosen to yield a self-adjoint equation for g, and
N is a normalization constant. It is easy to show {hat the choice

N
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((1,,1)——ln(l~r~t—’(l +[)) (1 +[)+B( U, +1° an
yields the following self-adjoint equation for g, -
IR O BCLA =) 2 (u-w 3 m)
YPY— — = — ] W= Ri ——— - .
{JI,I‘ 0, e [u* Ui+l N AU G e ey KCREH
A=-0C B A
e '(“I”‘”’-’b“ﬁm]}‘l,=0- (12)

Notice that the steady-state solution corresponds
to L=0=m, X, =0and is found from Eq. (9) after
straightforward integration to be

P, 1) =Q (1 +§(1l +12))

x exp( (1 +1,) - 42(1 +1 J) (i
If we choose N = ., the relation [Eq. (10)} can be

rewritten for later convenience in the form

il I = Pl + (B AW, + 1) Mg, (L) . (14)

The functions g, may be chosen to be an ortho-
normal set. In addition we assume that they form

a complete set. The two conditions can be ex-
pressed in terms of the eigenfunctions 7, as

f—f-—n—lx—’-)-’u(—*—wu =5, .5, (15)
Py 1) "
Z_;‘ (1,,1,)f (1'"1')=5(1.-11)(12-1£)~ (16)

p i, 1)

To calculate two-time correlations we shall
need the Green’s function G(/,,/,,t |12, £2,¢,) which
is also the conditional probability for the intensi-

Lm

—
The two-time joint probapility density

Pl 1y, 1], 1,17 for the intensities at two differ-
ent times can be obtained easily now. Noting that
the stationary-state probabilities are independent
of the origin of time we obtain

Pollys byt + T3 L 1 Y =GU Ly, T 1, 0 (], 1)

22 il LY (0 I emT
im
720. (18

For discussing second-order intensity correla-
tions, we need the two-time joint probability densi-
ty, which we have been able to express in terms

of certain eigenvalues and eigenfunctions. For
discussing higher-order intensity correlations,
higher-ourder probabilities will be required, which
also can be expressed in terms of the same set of
eigenfunctions and eigenvalues. Our problem now
is to solve for the eigenvalues and the eigenfunc-
tions.

111. SOLUTIONS OF THE EIGENVALUE PROBLEM

The eigenvalue equation (12) can be written in
a simpler form in terms of two new variables de-
fined by

ties to be characterized by the values /, and /, at w=l +l,, u.-0 (19a)
time ¢ given their values 10,73 at #,. To this end -1
we note that G(/,,1,,11°,13,1,) is the solution TRYAN =101 (190)
P, 1,,1} of the Fokker Planck equation {7) with z
the 1nitial condition P(1,,1,,1,) = 5, = BV5(I, - [0). or
It follows immediately that 11:% M~ =1V}, (19¢)
Gy, 1,0\ 1, 1, t)
We also have
Zr“ ULy 0 U
= ! ’ »=A it tod . dldl, =z dudy .
T oplny T e (20)
{amn Then g, . obeys the following equation:
_
9 , 0 (BC*, BC(A-() (A-C¥ 3 B(‘) . 1=0 ( B )A : ]
— Pt — - : i P -\l +=y )L —1- — =0. (21
[au" kY (4,\-" XUl Al ol ) (A S U ) Bruth et g RE
: r
' The form of Eq. (21) suggests a solution of the d . d BC? , BC(A-C) ((.~4- R gﬁg)' .
i form ALY VUL WU W FER BT
3
gl Y= R 008 (1), (22)

Substitution of this into Eq. (21) yields the :utlow-
ing two uncoupled equations for &, (1) and 5, (r):

"’L]Rm:o

(23a)

A-C 3\,
+u(\d()—u<l+%u)—:’+
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and

%(l-rﬂ%SLfALSL:O, (23b)
where 3, is the separation constant. With the
choice 3, =(L 4N (L+2)=[(+1), 1=0,1,2, Eq. (23b)
is just the Legendre equation and S§, can be ex-
pressed in terms of P, the Legendre polynomial
of order ! as

172
S, =(21;l) P (24)

The eigenvalue equation (23} can be reduced to an
even simpler form by making a change of variable

u=v, %‘1114 =r4dr,
(25)
R, (PA)y=r™y, ().

AND M. 20 ZUBALIRY 23
The equation satisfied by ., 13
4 BCE 0 2BC(A-O)  Hf{a-c )\ 6BC
r=AE R e ek Ay Ay ke
+'_4(_\'.£_) - 4(1 *ﬁ ,.')L'.z
A A -
+—~—-———L(L?2)?'l =9 26
> }' Lm . (et

This e¢quation 1s similar to the equation encountered
in the solution of single-mode® and two-muode ring
laser problems- except for the r-dependent factor
muitiplying the ewgenvalue. Unfortunately Lq.

(26) cannot be scived analvtically and numerical
methods have to be used. Finally., 1n terms of the
new functions the two-time joint probability has the
form

J

. [‘ Lz
ol L b+ THL 1, ) = | p ) (]2 LZRI‘_M(M)(I ) st R, )

B 1’2
X \l+—n' SL(I’)C"LMT, T O. (27
A

Higher-order joint probabilities can be expressed similarly. With the knuwledge of the two-time joint
probability function, we are now in a position to discuss the intensity correlations.

IV. INTENSITY CORRELATIONS

We shall consider only the second-order or the two-time intensity correlations. Higher-order correla-
tions can be discussed similarly with the knowledge of the higher-order joint probabilities. From the
definition and by symmetry, the two autocorrelation functions are equal, i.e.,

DT+ T =D {t+ TH
=ffff1;1, by Iyt + T 1, 15, )dl\dl,dlidl] . (28a)

The intensity cross-correlation function is defined by

{LINL+ T =L, +TY
=ffffl{12p2(ll,lz,t+T(I{,I;,I)dlldlzdlfdlg. (28b)
We can evaluate them all together by writing
U+ TH =ffff LILp, (1, It + T, 13, 0dldrdlialy, j,j’=1,2. (29
With the help of Eq. (27) and Egs. (18) and (19) we obtain

o 2
GOIAATY =) 2 U du u’Roo(l +§u)RL,,‘
! ! im u A

A+ 2 1 ! . .,
x(—z ) e"LmTJ’ dv(1 = (1) )P, () f AL = (=D ]p (), jut=1,2. (30)
-3 -1

From the orthogonality property of the Legendre »~'vner-ila, we have

H
f (L= (=10} (r)de =25, = 5(=1)75,, . (31)
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Using Eqgs. (25) and (31) in Eq. (30) we obtain the following expression tor the 1ntensity currelations:

UM+ T = Z [c“omf

m=0

0

,
DT

0

The r integrals have to be evaluated numerically.
The ntensity correlations, thus, can be expressed
as a series of falling exponentials with coefficients
which can be evaluated in terms of the eigenfunc-
tions of Eq. {27). The behavior of the normalized
intensity correlation functions

Jy3'=1,2 (33

UM+ TY
AT =+_L— -1,
by T I

is illustrated in Figs. 1 and 2. Numerical calcula-
tions show that near threshold many terms in the
series of exponentials contribute and a single ex-
ponential approximation 1s rather poor. However,
for large excitations they are well approximated
by a single exponential. In fact,

_l=nrr ( 28C? )
By T) = 3 exp \- A—___—(A—C) T (34)

is a good approximation for 1< 1.01C. It follows
! from Eq. (34) that with increasing excitation in-
tensity correlation time may increase which is

C
I
=
- 05
1
[ X!
0007
[ 0.0
o] 10

5
T {Natural Units)

FIG. 1. Normalized autocorrelation function u (f) as
a function of T for three operating points (4 - C)/A
=0.0, 0.007, 0.1. The parameters for this figure are
A=1us", A/B=10% and C was varied.

® B :
I rzdre.oo(1+:1 r') Com
f rédr . no(1 + ij V'“') " am

] ji'=1,2. (32)

r

clearly reflected in Figs. 1 and 2. These conclu-
sions are similar to those reached by Tehram

and Mandel and Hioe’ fur a two-mode laser. This
similarity again points out to the fact that they
both correspond to a system of two neutrally
coupled modes as noted in Ref. 1. In view of these
remarks we expect that the general time-~dependent
problem when the losses of the two modes are not
equal can be discussed using a perturbative ap-
proach for small differences in the losses along
the lines of Ref. 5 and similar conclusions may

be reached. We shall not consider this problem
any further, however.

V. SUMMARY

We have considered and solved the problem of
two-mode laser oscillations on coupled transitions
in a A configuration of a three-~level atomic sys-
tem. Two-time intensity correlations have been
studied and the expressions for them as a series

W2(T)
i
w

N
0.007

oo

0 o} 16]

T !Notura: Units)

FIG. 2. Normalized cross-correlation function uy ()
as & function of T for three operating points. For para-
meters see Fig. 1.
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of decreasing exponentials have been derived. It

15 found that the correlation time increases with
increasing excitation and that for even moderately
high excitations all second-order intensity correla-
tions are well approximated by a single exponen-
tial.
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[he steady state quantum statistical properties of heht in g wo-mode two-photon faser are presented, It s shown that

the second-order coherence tunctions stolete d ciassical mequalits,

In many systems involving the interaction between
Jight and a medium, the quantum statistical proper-
ties of light are predicted to exhibit some nonclassical
effects [1]. The most well-known example of these
effects is photon antibunching which was predicted
and then observed in resonance fluorescence [2.3)
and theoretically predicted in a multiphoton absorp-
tion process [4.5], second-harmonic generation |o].
Jdegenerate patametric amplification [7]. and tree-
electron laser [X]. ete. We define the degree ot sec-
ond-order coherence of light to be

lajajaap

G =
Q; a,-)(a,' ap)

i (1

where g and 4, are the creation and destruction oper-
ators ot the ficld in the mode 7 and the angulur
brackets denote the ensemble average. The photon
antibunching 1s exhibited by the tields which satisty
the inequality

Al
Gt {2
1.e. the degree of second-order coherence is less than
umty, Thisis true of the field distributions in which

photons are anticorrelated.
I the case of intensity measurements on the two

Roesearch supported by the US, Nr Foree Ottice ot
Scientitic Research (AT OSH),
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beams. we obtain [for a non negative two-mode
Gluuher's coherent state representation Py . 751

il A
= Hvypi=luai=y-

X Pl s Py va) &y dRus dfey dies 20

This leads to the following quantum anaiogue ot the
Cauchy’s inequality [1]

Gy (GG (3)

The violation of this inequality would be expected in
svstems where the correlation between the two beams
1s larger than the correlution between the photons or
the same beam. This nonclassical correlation between
the light beams has been observed i two-photon cas.
cade emission [9].

In this paper we give another example where the
violation of the inzquality (3) could he obsenved,

We constder a two-maode two-photon laser in
which lusing action is achicved by stumulated enus-
sion of two photons i a single atomic decay. The
Laser model consists of g coupled svstem ot tield and
identical two-level atoms, The lasing levels or the
atoms are assumed to have the same panty under the
usual dipole approxvimation for the two-photon tran-
sitton to take place.

The quantum statistical properties ot the optical
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field ot a two-photon laser have been studied in de-
tails in recent vears {10 17]. These include studies
on single-mode and two-mode lasers, Many authors
restrict themseldves to the model of a two-photon laser
in which the end mirrors are assumed to be transmit-
ting at the sum trequency [10.13,14.17]. The restric-
tion to a two-photon loss mechanisny is made in order
to retain the property of detailed balance. In this pa-
per we consider a more realistic model of a two-mode
two-photon luser in which the cavity loss mechanisms
of the two modes are simulated by the single photon
processes.

We consider two tield modes in a resonant cavity
interacting with a system of dentical two-level atoms,
The atom -ticld interaction may be described by the
eftective hamiltonian in the interaction picture

Hy =Tig(o*dds + 0 dd3). (4)

where g is the coupling constant and the atom opera-
tors ¢* and o~ are defined by

. (0 1 ) - (0 0 ) 5
at = . = .
00 1 0/ {
The master equation tor the photon distribution tunc-
tion p(n . 115) can be obtained by a straightforward
extension of the Scully—Lamb theory [18] of a single
photon laser. The resulting equation is

dp(ny.n») —A(y + Dna + 1)

dr 1 *“(BV/A)iml + 1)y + 1) Uty )

Anypns
Y@ P e

+C () + DpGrp + 1) = Cppingin,)

F Oy + DpOry s + 1) - Conaparp.ns) o (6)

where A4 and B are the gain and saturation parameters
tor the two-photon gan mechanism and C; (i = 1.2}
is the loss parameter tor the ith mode which is related
to the mode frequency w; and @ of the cavity by the
relation

C=wi/Q. (7
This equation is difficult to solve even in steady state
becuuse cach element piny . iy is coupled to pra

s L pory + Loy and porgons + 1) which
represent twa-photon emission (one in cach mode),
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single-photon absorption i mode 1 and single-photon
absorption i mode 2 respectnely.

We can however determine the second-order corre-
fation tunctions in steady state when the faser 15 oper-
ating hugh above threshold, In this rezime w81 >
1. When this condition is satisticd. we can neglect
unity in companson with the terms proportional to
B/ in the denominators of the first two terms on the
ths ot eq. (6). We then obtain (in steady stater:

ABIIn ) H A B Ly
+Cpong  Dptny Loy Cogptngois) (8

+(‘:(H: + ])[’(Hl. ": + 1) C:H:[.’(H].H:’= .

Various imoments ot # and 711 e.g. <n‘]‘n”s>(u. J=0.
1, ...) can be obtained by multiplving eq. (8 by
n"l’n'é and summing over #1y and 175, 1t can be easily
shown that (fori=1,2)

(n)=A%/BC; . (9
(nfy=mp?+ ny, ({10
gy =Py [T+ + ) H (n

-

On recalling the definitions of G:-/-“‘ [eq. (1], we ob-
tain

GP=63"=1. G =1+ [mp+md] .12

It is evident that the Cauchy's inequality (3} s violat-
ed in the present case. This nonclassical etfect 1s how-
ever very small, of the order of (v + <2 L

It is a pleasure to thank Protessor M.O. Scully tor
his support,
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